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The success of per turbat ion calculations of  second order for the NFE  ("Nearly Free Electron") 
metals and that of  the two-parameter  model of  Pettifor for the transit ion elements show that the 
lattice-stability of the metals has simple physical reasons. Using the results of  Harrison, Heine and 
Weaire, Deegan, and Pettifor, a model is developed which allows to explain the stability of  the three 
metal lattices in terms of  differences in the potentials. Only those potential differences are considered 
which are caused by the different packing of the lattices. With the aid of  the virial theorem the band 
structure energy is connected with the potential bandstructure energy. The sequence of  stability is 
predicted to be body centered cubic (bcc), hexagonal close packed (hcp), face centered cubic (Jbc) 
with increasing valence electron concentration. The ranges of stability can be expressed in simple 
numbers.  This simple model holds in principle for NF E  as well as for transit ion metals because it 
contains no assumptions  restricted to only one of these metal types. Deviations of the observed lattice 
stability f rom the model can be unders tood from the approximations involved. 
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1. Introduction 

The first type of chemical bond which was understood, was the ionic bond. In 
simple ca.ses the structure of heteropolar compounds can be explained with the 
aid of the Coulomb model and the ratio of the ionic radii (e.g. Krebs [1]). Quantum 
mechanics explained the covalent bond, and the concept of hybridization (e.g. 
Krebs [1]) helped to understand a variety of systems. In 1957 Altmann, Coulson, 
and Hume-Rothery [2] tried to give an explanation of the structure of the tran- 
sition metals using directed hybrids. But this picture is not sufficient. A tight- 
binding calculation for chromium (Asdente and Friedel [3]) has shown that the 
energy varies over the whole width of the d-band along several symmetry lines 
(e.g. A,F) without any variation in hybridization. Therefore the understanding of 
lattice stability in metals can not be based on directed orbitals. 

By means of the pseudopotential method (for a short review see e.g. Brauer [4]), 
Harrison [5] could explain the lattice stability of sodium, magnesium, and 
aluminium. Using second order perturbation theory, Heine and Weaire [6] and 

* Part of  the dissertation, Stuttgart 1973. Dedicated to Professor Dr. Heinz Krebs, who deceased 
on May 21, 1974, in Stuttgart. 
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Blandin [7] made considerable progress in understanding simple metals which 
have only s and p valence and conduction bands. To a good approximation they 
can be treated with the "Nearly-Free-Electron" method (NFE) (compare 
e.g. [4]). 

Hubbard, Dalton [8, 9] and Pettifor [10] simplified the Korringa-Kohn- 
Rostoker Method (KKR), [12] to the Hybrid-Nearly-Free-Electron-Tight- 
Binding method (H-NFE-TB). Pettifor [11] applied this scheme to the transition 
metals and predicted the observed lattice stability, when using only the two reson- 
ance parameters e a and F a of the virtual d-states (see Sect. 2). In 1968, Deegan [13] 
has shown already for the transition metals that the stability of the body-centered 
cubic lattice (bcc) compared to that of the face-centered cubic lattice (fcc) has a 
maximum for the half filled d-bands. 

Today it is possible to calculate the stability of some phases by complicated 
ab ini t io calculations (e.g. [14]). 

In 1968 Brewer [15] proposed a general explanation of the lattice stability on 
the basis of spectroscopic data. 

Based on the work of Harrison [5], Heine and Weaire [6], Blandin [7], 
Deegan [13], and Pettifor [11], a model of the lattice stability of the metals 
should provide the following properties: 
1. It should comprehend both NFE- and transition metals. 
2. It should be simple. Actually the success of perturbation theory of second order 

for NFE-metals with plane waves and that of the two-parameter model of 
Pettifor for the transition metals show that the physical reasons for the lattice 
stability in principle cannot be too complicated. Both methods cannot involve 
more than what is provided by Hamiltonians, the potential of which diner 
only in the arrangement of the atomic potentials. This simplicity is also suggested 
by the wide distribution of the three metal lattices in the periodic system of 
elements (PSE) or the chemical differences. Although metals such as potassium 
and tungsten show large chemical and physical differences, they crystallize 
in the same lattice. 
Let us consider as an example the difference in the hardness between potas- 
sium and tungsten in more detail. As it holds for other physical properties too, 
this difference is caused by the bulk of the cohesive energy which does not 
influence the structure. Thus, as far as we are dealing with the structure energy 
differences of one and the same metal, we should not worry about differences 
like that in hardness. 
But even if one could argue that if the hardnesses are very different one 
cannot treat two compounds in the same way, one could treat K and Wtogether: 
the hardness of W is about 250 to 500 times that of K [16, 17]. These numbers 
have to be divided by the numbers of valence electrons. Then the factor for W 
is about 40 to 80. For iron we would find about 6 to 25. Now we look which 
factors we find for ionic and covalent compounds. For example for MgO and 
KJ we find 70. Actually the structure of these compounds can be treated as 
ionic because in both cases we have a ratio of the ionic radii determining the 
structure to be that of NaC1. As covalent compounds with the same type of 
bond system we take CdTe and BN. The hardness factor here is 200! 
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3. As in chemistry it is usual (see e.g. Krebs [1]) there should be a picture of  
the charge distribution and the potential which accounts for the energy dif- 
ferences between different lattices. 

In Sect. 2 the necessary terms are explained and the essential suppositions of 
this work are summarized. In Sect. 3 a picture of the connection between band 
structure energy differences and potential differences is developed. In Sect. 4 the 
valence- and conduction bands which form the basic mechanism of the lattice 
stability are described and their properties are discussed. The connection between 
the lattice stability and the changes in the density of states curve is analyzed in 
Sect. 5. The general sequence of the stability of the metal lattices is given in Sect. 6 
and is applied to the NFE-metals in Sect. 7 and to the transition metals in Sect. 8. 
The differences between the predictions of the model and observation and calcula- 
tions of Pettifor are discussed in Sect. 9. In Sect. 10 a summary is given. 

2. The Essential Suppositions 

After Deegan [13] and Pettifor [11] the total energy of a crystal may be written" 

Etot,l= Ebs + Er 

Ebs is the band structure energy, which is the sum of the energy of the occupied 
one particle states. E r contains the energy contributions of the electrostatic energy 
minus the self energy of the valence electrons, the contribution of the ion cores 
and the exchange and correlation effects. After Harrison [5] and Heine and 
Weaire [6] for the NFE-metals, and Deegan [13] and Pettifor [11] for the tran- 
sition metals, it can be assumed that for the highly symmetric metal lattices the 
band structure energy Ebs determines to a very good approximatio{a the energy 
difference between the lattices. For  two metal lattices A and B this means: 

E A B _ _  I~'A __ IZ,'B ~ p A  __ p B  _ _ p A B  
- -  J ~ t o t a l  ~ t o t a l  ~ ~ b s  ~ b s  - -  ~ b s  

The metal lattices are the body centered cubic (bcc), the hexagonal close packed 
(hcp) and the face centered cubic (fcc) lattice. Their band structure energies are 
calculated and compared at constant atomic volume. Applying pseudopotential 
theory for NFE metals this can be done by perturbation theory of second order 
[5, 6]. Only those members of the reciprocal lattice sum are of importance, which 
have a distance K smaller or equal to the six second-nearest neighbours of bcc. 

Eas ~ Z KNA(KA)X(KA/2kF)(VA(KA)) 2 
K A ~ < K  

K A is the length of a vector of the reciprocal lattice. KN A is the number of  equiva- 
lent reciprocal lattice neighbours and VA(K A) are the associated Fourier compon- 
ents of the pseudopotential. The pseudopotential consists of the crystal potential, 
and the repulsion potential which is caused by the overlap of  the atomic valence 
orbitals and the core orbitals of  neighbouring atoms. The effect of the repulsion 



290 B. Reiser 

potential is to push the charge density out of the core region (e.g. [6]). X(KA/2kF) 
is the perturbation characteristic: 

~F 1 
X(KA/2kv) 

x ~  

+ ~2 _ (~ + ~a)2 

After Heine and Weaire [6] all the low lying Fourier components of the pseudo- 
potentials of the light NFE-metals are constant to a very good approximation. 
Therefore one can put 

VA(K  A ) = V B ( K  B), K A ~ K B 

Using this approximation the lattice stability which is given by the sign of AE~f, 
is independent of  the specific light NFE-metal  and depends only on the valence 
electron concentration (VEC) [6]. 

After Deegan and Pettifor [13, 11] the same statement holds for the transition 
metals. By the angular momentum part of the potential, the d states are strongly 
localized in the inner part of the atom. (For an explanation see the book of Ziman 
[17].) Only the weakly bound, unscreened parts of the d band eigenfunctions 
reach into the flat portion of the potential between the atoms. The situation for 
the d electrons is similar to that of the pseudo-eigenfunctions : changing from one 
lattice to another only the change of this flat region of the potential plays an im- 
portant  role. Variations of the Fourier components of the potential corresponding 
to longest wavelength are most important. The part of the d states which are 
localized in the inner region of the atoms can be treated as virtual states [18] 
which are in resonance with the delocalized states. This resonance is determined 
by the resonance energy ed and the resonance width F d. These two parameters 
appear in Pettifor's calculations [10] only in form of the ratio ?d 

Fd 

Kdz(Kdri) 

which is constant for all transition elements (r i is the radius of the muffin-tin 
sphere). 

As these considerations show, the core region of the atoms is in effect in- 
dependent of the lattice. For  the s-p bands of NFE and transition metals this is a 
natural consequence of the pseudopotentials. Because the atomic d orbitals are 
more localized than the s and p orbitals the changes of the core parts of the d band 
states are smaller than those of the s and p band states. The resonance energy e, 
depends essentially on the inner parts of the atomic potential, while the resonance 
width F~ depends more on the portion of the potential in the region beyond the 
core. The quantity ?d combines these two parameters ed and Fd and is found to be 
independent of the lattice. By similar arguments, it can be shown that the mean 
value of  the potential is lattice independent. 

~dO J~o 

f2 o is the volume of the unit cell. For  the NFE-metals P is the term corresponding 
to first order perturbation theory which does not enter AE AB 

b s  • 
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3. Lattice Stability and Potential Differences 

The Virial theorem gives us a convenient connection between the total energy 
E and the total mean potential energy V (Slater [20]) 

1 - -  3 E=~V-~p~2o 

~20 is the volume of  the unit cell. We assume that this equation holds for all lattices. 
The rearrangement of  the atoms going from one lattice to the other can only 
happen by performing disordered structures. Because we observe almost only the 
crystalline state for metals we can assume that the lattices have a lower energy 
than any disordered structure. Therefore all outer forces [20] vanish besides that 
one caused by the pressure p, and we are left with the above equation. 

As was pointed out in the foregoing section we have to compare different 
structures for equal atomic volume and vanishing differences in the energy contri- 
butions E r. Therefore we obtain for the differences in the bandstructure energy 
and the potential bandstructure energy of two lattices A and B: 

A~AB 1A TAB 
~ b s  ~ z 3  Vbs 

This equation gives us the possibility to discuss the lattice stability by the 
potential differences of the lattices. We may use it in two ways: 

a) We change the valence electron concentration (VEC) by going from one metal 
to another, for example in the row sodium, magnesium, aluminium. Here we 
cannot vary VEC continuously. 

b) We change the VEC for one and the same metal. There arise especially electro- 
static forces which change E r. But because they vanish in the neutral case 
we neglect them here too for reasons of consistency. Besides this reason we 
may ignore electrostatic forces because we are only interested in the dependence 
of AEA~ on A ffAff which is for the electrical neutral case only important. 

Because of the independence of the shape of the bands from VEC (Sect. 2) both 
ways a and b lead to the same conclusion concerning the dependence of the lattice 
stability on the VEC. 

We are treating the metallic bond in a completely general way. Therefore we 
cannot consider the effects of special types of the atomic potentials Vo(r ) on the 
lattice potential V(r) 

V(r) = y. Vo(r- i) 
J 

and the bandstructure energy, j is a lattice vector. For an appropriately chosen 
V0(r ) one may always have any lattice most stable for any VEC. This is because 
the reciprocal lattice vectors are always different or at least they can be chosen to 
differ infinitesimally. Thus the Fourier components of Vo(r) and of the lattice 
potential can be completely arbitrary. 

In our general treatment we discuss the lattice stability only so far as it is 
determined by the potential differences caused by thc different packing of the 
lattices. 

It is not selfevident that the virial theorem holds for a one particle potential. 
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Generally it holds only for the case of a many-particle potential, for example a 
self consistent Hartree-Fock potential. But we may stay with a one particle 
picture because we can always assume that our one-particle potential is adapted 
to the many-particle potential. This is possible, at least in principle, by determining 
the coefficients Vm of an Ansatz for the atomic potential Vo(r) 

Vo(r)= ~ ~mg~(r) 
m = l  

with localized and spherically symmetric orbitals gin(r) so that we obtain for a 
certain VEC the same energies and potential energies for the three metal lattices 
as in the many particle picture. The accuracy of this adaptation is only a question 
of the number m of the coefficients in the Ansatz for Vo(r). 

The lattice potentials V(r) represented by a superposition of atomic potentials 
Vo(r) as shown above are called overlap atomic potentials (OAP). We notice that 
their mean values P are lattice independent: 

4. The Valence Function Space (VFS) 

If  the structure of a compound changes, only a few atomic-like and appro- 
priately chosen orbitals or hybrids are necessary to build up the occupied eigen- 
functions of any crystal by Bloch sums (e.g. [4, 18]). This is explicitly shown by the 
tight-binding calculations for lithium of Lafon, Lin, Chaney, and Tung [19, 20]. 
For simplicity we may imagine that the occupied states together with a sufficiently 
large number of conduction states play the role of a closed function space with a 
lattice-independent energy center of gravity (53. But because this independence of 
the energy center is not exactly fulfilled in the real case, it is necessary to consider 
the upper part of our function space as a buffer zone which only provides the 
lattice dependent changes of/~. The whole function space will be called valence 
function space (VFS) and the part  of it below the buffer zone will be called the 
occupation part. The buffer zone prevents the lattice dependent energy changes of 
the occupation part to be influenced by the changes of the states above VFS. 

This model should be especially appropriate for metals because the effective 
changes of their potentials are small and therefore the buffer zone must be small 
too. In the case of free electrons as well as in the tight-binding limit the buffer 
zone vanishes. A very nice example for a VFS is the d band without s-p hybridiza- 
tion given by Pettifor [11]. 

5. Lattice Stability and Changes of the Density of States 

According to Sect. 2 the lattice stability depends only on the valence electron 
concentration (VEC). Now let us assume that for small VEC(zA) lattice A is stable 
while for a large value of VEC(zB) the lattice B is more stable. Which differences 
in the densities of states of A and B could account for the stability within our 
model ? First, for small VEC, A must have more states with lower energy than B. 
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These are the states I in Fig. 1. Second, to make B more stable than A, in the notion 
of  Figs. 1 and 2 the states II  of  A must  be elevated enough in energy. Would this 
happen only on account of  the energy decrease of  the states I of  A, B could never 
become more stable than A; it could only reach an equal stability. The states II 
of  A must  be elevated on account of  the states I I I  which therefore must be de- 
creased. Generally this means:  to invert the lattice stability, the states in a certain 
region must  be elevated on account of  the deeper states as well as the higher states. 

We subdivide the density of states into groups of states so that the energy 
movement  of  each group changes (under a lattice change) its direction going from 
one group to the next. I f  it would be impossible to find more than two groups (the 
energy change of  which are opposite), in the higher of  these groups an infinite 
number of  states would see the same direction of potential changes - in spite of 
the fact that  the arrangement  of atoms changes completely with the lattice. There- 
fore we have more than two such groups. And groups far apart  do not interact as 
it was already discussed in the foregoing section. This means that the three lowest 
of  these groups display the stability mechanism shown in Figs. 1 and 2, and that 
we have always to expect a lattice stability change when VEC varies sufficiently. 
For  all valence electron concentrations possible for N F E  respectively transition 
metals we could find one and only one lattice stable if all the Fermi energies would 
fall in one and the same group. But this would mean that this group would be 
extremely large. 

As has been shown in Sects. 3 and 4 the change in the density of  states is caused 
by the change in the potential energy. What  does this mean for the lattice potentials ? 

z A z B 

I II III 

I 

Fig. 1. Two typical density of states distributions (schematic) of two crystals A and B for which the 
stability changes with increasing VEC from left to right 

A 0 0 0 0  B O00"?II[ ,," 
0 """ 

O 0  /" ' /  ,, ' '  ' 
0 II/ / II / /  

..... ! / /  I ..... !o ° ° °  

Fig. 2. Schematic representation of the potentials of the crystals A and B and their effect on the electronic 
states indicated by circles. These potentials are produced by the different arrangements of the atoms in 

the two crystals 
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Because the low energy states of A lie deeper than those of B, A has deeper potential 
valleys than B. This must be so because it is impossible to have the deeper potential 
energy for a charge density localized in regions of higher potentials. Imagine two 
overlap atomic potentials (OAPs, Sect. 3). Although the mean value P of the 
potentials remains constant (Sects. 2 and 3) the different arrangements of the 
atomic potentials V0(r ) cause larger potential differences in A than in B. In A there 
are regions in which two or more atomic potentials approach each other more 
than it happens in B. As the atomic volume is constant, in A there must be other 
regions in which fewer atomic potentials participate than in B. We may say in 
short that A is more sperry than B. A compared to B has regions of smaller extent 
with effectively deeper potential valleys and others of broader extent which have 
the effect of higher potential mountains. As illustrated in Fig. 2, these potentials 
cause for the energy of the states I, II, and III, which are represented schematically 
by circles, the same movement as in Fig. 1. For example, the lattice stability changes 
in Fig. 2 from A to B at the occupation of eight states. 

I f  for any valence electron concentration the less sperry lattice is stable, there 
exists a smaller VEC where the more sperry lattice is stable. Therefore we have to 
expect that the stability sequence of the metal lattices, as far as it depends on the 
packing of the lattices, is that of decreasing sperryness with increasing valence 
electron concentration. 

6. The Model of the Lattice Stability 

In order to study the relative stability of bcc, hcp, and fcc let us consider their 
space filling. If  one goes from bcc to fcc or hcp the coordination number of the 
nearest neighbours changes. However, for hcp and fcc the first difference occurs 
in distance and coordination number of the third nearest neighbours. Therefore 
there is a significant difference between bcc and both hcp and fcc, but only a small 
difference between hcp and fcc. bcc has the smaller coordination number and 
smaller distances to nearest neighbours. It is more sperry and plays the roll of the 
lattice A of Figs. 1 and 2 compared with hcp and fcc. For example for bcc and fcc 
overlap atomic potentials have been calculated using Gaussian orbitals as V0(r ). 
Compared to fcc, bcc had always the deeper potential value V(r). Therefore we 
expect bcc to be stable for small values of VEC and the dense packed lattices 
(hcp, fcc) for high values of VEC. 

Perpendicular to the hexagonal plane hcp and fcc have trigonal channels. In 
hcp they are empty or twice as full as in fcc. Therefore hcp is more sperry and 
plays the role of lattice A and fcc that of B. With increasing VEC the sequence of 
stability is hcp-fcc. In terms of the potential, hcp is a compromise between bcc 
and fcc. Therefore if there are changes in the lattice stability at all, the general 
stability sequence is bcc-hcp-fcc for increasing valence electron concentration. 
The reason why this sequence is not only bcc-fcc is that because of the decreasing 
sperryness of the three lattices the VEC, for which fcc is more stable than bcc, 
is larger than the one for hcp. Thus there exists a VEC range between that of bcc 
and fcc for which we expect hcp to be stable. 

Now we estimate the division of VFS into the ranges for which one of the three 
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Table 1 

Stability Range in Parts of VFS 

bcc 2 
hcp 1 
fcc 1 
Buffer zone 1 

lattices is most stable. The lower bound of VFS is the lowest valence state. The 
upper bound is taken from the light N F E  metals for which the metallic state is 
possible up to three electrons per atom. For  four electrons, the light elements have 
covalent bonds. Therefore their buffer zone of VFS cannot be greater than one 
electron per atom. Consequently for N F E  metals the max imum VFS has the upper 
limit of  four electrons per atom. For  the transition metals ten d electrons per atom 
have to be added and VFS consists of  fourteen electrons per atom. 

Because the lattice difference between bcc and the densely packed lattices is 
much stronger than that between hcp and fcc the stability range of bcc is larger 
than that of  one of the densely packed lattices. The stability range of the densely 
packed lattices we may divide into two almost equal parts, the first for hcp and 
the second for fcc. The buffer zone of VFS (Sect. 4) only needs to interact with the 
upper region of the occupation part  and should not be larger than the stability 
range of  hcp or fcc. According to these arguments we choose simple numbers to 
divide VFS as given in Table 1. In the following two chapters these numbers are 
tested for N F E  and transition metals. 

7. Stability of the Light NFE Metals 

For  the N F E  metals the total VFS corresponds to four electrons per atom. 
The parts of  VFS as mentioned above lead to the following stability limits : 

Table 2 

VEC 0.0 1.6 2.4 3.2 4.0 

Lattice bcc hcp fcc 

Metal (Li) Be 
(Na) Mg A1 

Although lithium and sodium have hcp structure at room temperature,  they show 
a phase transition to bcc at 36°K and 78°K respectively. 

Heine and Weaire [6] replaced the perturbation characteristic X by a jump- 
function and got the following sequence of stability: 

Table 3 

VEC 1.0 1.5 2.0 3.0 

Lattice hcp bcc hcp fcc 
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Except for the occurrence of hcp at VEC 1.0, this is the same sequence of stability 
as above. 

Blandin [7] compared the stability of hcp with that of fcc without any assump- 
tion on the perturbation characteristic and obtained the following lattice sequence : 

Table 4 

VEC 1.0 1.5 2.0 3.0 

Lattice hcp (fcc) hcp fcc 

For  VEC two and three this is also consistent with our results. The stability of  
hcp at VEC one, will be discussed in Sect. 9. 

8. The Stability of  Transition Metals  

For  the transition metals VFS corresponds to fourteen electrons per atom. 
The stability limits are: 

Table 5 

VEC 0.0 5.6 8.4 11.2 

Lattice bcc hcp fcc 
Group of PSE (Sc) (Ti) V (Cr) Mn Fe Co (Ni) (Cu) 

The chromium group has bcc. The simple choice of dividing VFS cannot account 
for this stability. In the scandium- and titanium group hcp dominates. This will 
be discussed in Sect. 9. However, it should be mentioned that the high temperature 
form in the titanium group is bcc. Nickel and copper have fcc as predicted. But 
Pettifor's calculations have shown that this is rather due to the hard-core effect [ 11 ] 
than to the band structure energy which gives bcc instead of fcc. Here nothing can 
be said about the zinc group and the metals below the scandium group. For  these 
groups the lattice stability is not determined only by the degree of  occupation of  
the density of states by electrons. If this is the case we are leaving the suppositions 
of  Sect. 2. 

9. The Deviations from the Model 

The deviations from the predicted lattice stability are understandable as 
consequences of  the simple suppositions of  the model. Especially the following 
points have not been taken into account: 

1) Peculiarities of special lattices (as e.g. lattice symmetry). 
2) The lattice dependence of the potentials. 
3) The different symmetries of the atomic orbitals. 

9.1. Peculiarities of Special Lattices 

In fcc and bcc there are respectively twelve and eight nearest neighbours 
which are connected by symmetry operations of the point group of the crystal. 
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This is not the case for the next nearest neighbours ofhcp which is the consequence 
of the much lower symmetry of D3h compared with Oh. If the neighbours were 
equivalent it would not be possible that there is, in the reciprocal lattice, a splitting 
in three different sets of  neighbours the distances of which have only little differ- 
ences. For  hcp it happens that the smallest nearest neighbour distance of the 
reciprocal lattice is shorter ( 2 ~ )  than that of bcc (,,/2. ~ )  and fcc (,~/-3). 

With increasing energy the deviation of the s-p bands from free particle bands 
increases. In the same direction the localization of the d states in the atomic region 
increases. In both cases the contributions of the higher Fourier components grow. 
For the deepest states the contribution of the lowest Fourier components domin- 
ates. If only the states lowest in energy are occupied these long-wavelength 
Fourier components favour hcp in comparison to the cubic lattices. After Heine 
and Weaire [6] actually the shortest Fourier component of hcp is responsible for 
the stability of this lattice at VEC equal one. For the transition metals a similar 
situation is found, especially for the scandium group which has hcp again. 

9.2. The Lattice Dependence of the Potentials 

The distances 1.782 (bcc), 1.848 (hcp), 2.000 (fcc) are the largest possible ones 
of those lattice vectors which play an essential role for the band structure energy 
of the NFE metals. They increase in the row bcc, hcp, fcc. If  the Fourier components 
to these K vectors do no longer fall in the flat part of the Fourier transform of the 
pseudopotential V(K) but in the negative and increasing part, the stability of the 
lattices decreases in the above sequence. This is the case for the row caesium, 
barium, thallium and lead. Caesium, barium and thallium above 330°C have bcc. 
Thallium in the low temperature form has hcp. Lead has fcc. If  the atomic weight 
increases, the first zero of V(K) runs through the low reciprocal lattice vectors to 
larger K. Compared with the light NFE-metals the heavy NFE-metals need a 
higher VEC to make hcp or fcc stable. With increasing atomic weight the repulsion 
potential decreases. The eigenstates are increasingly localized in the inner part of 
the atoms. Potential changes in the outer region of the atoms influence higher 
states in VFS. 

9.3. The Different Symmetries of the Atomic Orbitals 

After Pettifor [11] in the scandium group fcc (and hcp) is favoured versus bcc, 
and bcc versus the dense packed lattices in the nickel and copper group. This is 
partly the consequence of the well-known fact that the density-of-states function 
of bcc consists essentially of two peaks with a deep valley between them. There 
can be no doubt that this will be favoured by the considerably higher degeneracy 
of eigenstates for bcc in the points H and P of the Brillouin zone compared with 
the points X and L in fcc. This degeneracy allows only for small distances between 
the branches of the bands. Such a strong effect is not possible for states with pre- 
dominant s or p character. 
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10. Summary 

Starting f rom a consideration of the work done by Asdente and Friedel [3], 
Harr ison [5], Heine and Weaire [6], Blandin [7], Pettifor [11], Deegan [13] 
and Lafon, Lin, Chaney and Tung [19, 20] the following statements concerning 
the metallic bond and the lattice stability can be made:  

The energies of  different structures have to be compared at the same atomic 
volume. The energy difference can be approximated by the band structure energy. 
The lattice stability depends only on the valence electron concentration VEC. 
The core region of the atoms and the mean values (P)  of  the potential are lattice 
independent. 

Using the virial theorem the lattice stability can be connected with the difference 
in the potential band structure energy. There may be two kinds of  potential dif- 
ferences: 

One depends on the particular shape of  the atomic potential and is characteristic 
for a special metal. We are not concerned with it. The other is caused by the dif- 
ference in the packing of the lattices. This allows a general discussion of the lattice 
stability of  NFE-  and transition metals. It does not depend on interaction between 
nearest neighbours only or on the use of directed orbitals. 

Especially for metals one can do as if there were a closed valence function space 
VFS with a lattice independent energy center of gravity. To change the lattice 
stability with increasing VEC the energy of  states in a certain region of the density 
of  states distribution has to be elevated on account of the energy of lower and higher 
states. 

The energy change can be explained by two potentials with different regions of  
low and high values but equal mean values. The smaller and deeper the regions of  
low potential in a lattice are, the higher and wider are the regions of  high potential. 

The connection of the metal lattices and the two potential types is found by 
consideration of  the differences in the packing of these lattices. A more sperry 
lattice has smaller atomic distances with deeper potential mountains. I f  for any 
VEC a less sperry lattice is stable there exists a smaller VEC for which the more 
sperry lattice is more stable. Therefore, if there are lattice changes at all, the 
sequence of stability should be bcc, hcp, fcc for increasing VEC. 

The model holds for NFE-meta ls  as well as for transition metals. The region of  
VEC in which one of these lattices is favoured can be expressed by simple numbers. 
This is proved for N F E  and d metals. 

Deviations of  the model from the observed lattice stabilities can be shown to 
be the consequence of the simple suppositions of the model. Impor tan t  are the 
peculiarities of  the lattices such as the lattice symmetry, the lattice dependence of 
the potential and the differences of the atomic orbitals. 
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